Rethinking Required: Complex Systems Are a Fundamental Barrier to Human Progress

Systemic Modeling and Application Seminar | CLEA | Vrije Universiteit Brussel (VUB)

Boyan Angelov

2025-05-06

The Big Question: Is The World Actually Unstable?

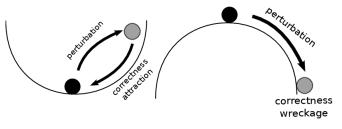


Figure 1: Systems in stable and unstable equilibrium¹

¹Benjamin Danglot et al., "Correctness Attraction: A Study of Stability of Software Behavior Under Runtime Perturbation," Empirical Software Engineering 23 (2018): 2086–2119.

Main Thesis

The main challenge facing human civilization's progress through the 21st century is the exponentially growing complexity of the systems we interact with, design and manage.

Clarifying questions:

- How can we define progress for human civilization?
- What are these complex systems?
- Are they really the root impediment to progress?

Even if we get answers, we are still left with a final question:

What should we actually do?

About

Career:

- Worked at the MPI for Marine Microbiology, focus on analyzing deep sea metagenomic data
- Data scientist \rightarrow CTO \rightarrow Principal
- Author of Python and R for the Modern Data Scientist (O'Reilly) and Elements of Data Strategy
- Writer for Handelsblatt, CDO Magazine and others

Projects and research:

- studyofprogress.org
- datamanifesto.org
- Explainability of black box machine learning systems (Figure 2)

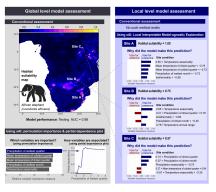


Figure 2: Explainable artificial intelligence enhances the ecological interpretability of black-box species distribution models^a

^aMasahiro Ryo et al., "Explainable Artificial Intelligence Enhances the Ecological Interpretability of Black-Box Species Distribution Models," Ecography 44, no. 2 (2021): 199-205.

Housekeeping and Agenda

Background:

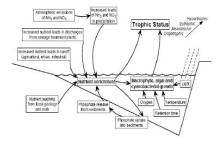
- Gathering feedback for the upcoming book
- On the intersection of history, sociology, economics, complexity science, and others
- It is a synthesis of ideas from different sources
- There are political elements in this project

Talk structure:

- 1 Motivations, assumptions and context
- Supporting evidence
- Paths forward (rethinking)

 \rightarrow The end goal is to combine ideas in a new way, form a new perspective and transmit it to a larger audience.

Motivations, Assumptions and Context


Motivations, Assumptions and Context

Motivations, Assumptions and Context

Early Inspiration I: Environmental Degradation of the Sea of Azov

Figure 3: Satellite image of southern Ukraine showing the eutrophic Sea of Azov^{α}

^aSeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE, "SeaWiFS Project" (NASA/Goddard Space Flight Center and ORBIMAGE, n.d.).

^aCE Van Ginkel, "Eutrophication: Present Reality and Future Challenges for South Africa," Water Sa 37, no. 5 (2011): 693-702.

Motivations, Assumptions and Context

Early Inspiration II: Chaos Theory and Fractals in Jurassic Park

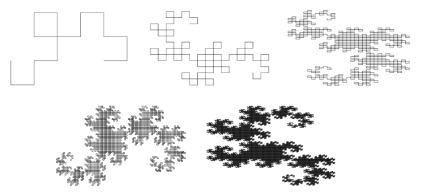


Figure 5: Usage of dragon curve fractals in Jurassic Park²

²Michael Crichton, Jurassic Park: A Novel, vol. 1 (Ballantine Books, 2012).

Motivations, Assumptions and Context

Early Inspiration II : Chaos Theory and Fractals in Jurassic Park

- · Unpredictability of complex systems
- Overconfidence in control
- Tipping points
- Feedback loops
- Emergence and adaptation

"The system always kicks back" - John Galla

^aJohn Gall, Systemantics (Wildwood House, 1977).

Figure 6: A map of the fictional Isla Nublar island (credit: Filip Povanzo)

Motivations, Assumptions and Context

Motivating Factors I: Divergent Narratives in Society and Academia

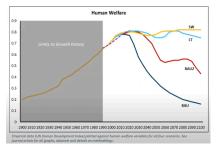


Figure 7: Update to Limits to Growth: Comparing the World3 model with empirical data^a

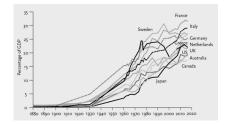


Figure 8: Social spending, OECD countries, 1880-2016^a

^a Steven Pinker, Enlightenment Now: The Case for Reason, Science, Humanism, and Progress (Penguin UK, 2018).

^aGaya Herrington, "Update to Limits to Growth: Comparing the World3 Model with Empirical Data," Journal of Industrial Ecology 25, no. 3 (2021): 614-26.

Motivations, Assumptions and Context

Motivating Factors II: Mismatch Between Problems and Solutions

- Frustration with the lack of conclusive, based on evidence answers
- Frustration with the lack of actionable advice, that goes beyond individual actions

 \rightarrow We have become excellent in diagnosing problems, but need to come up with more solutions

Figure 9: "An Incoventient Truth" (2006)

Motivations, Assumptions and Context

Assumptions

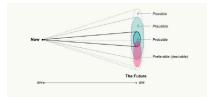


Figure 10: Some scenarios are more probable than others $^{\mbox{\scriptsize a}}$

- The world is unstable
- Quantative answers are difficult, but qualitative ones are feasible
- We can (roughly) predict the future
- There is a moral imperative (out of scope)
- We can commit to objective reality
- There is an **availability of answers** in the literature

^a J Bühring, Jeanne Liedtka, et al., "Foresight by Design: Supporting Strategic Innovation with Systematic Futures Thinking," 2018.

Motivations, Assumptions and Context

The Foundation of Progress Studies

Figure 11: The industrial revolution and world trade fairs are a common theme in Progress Studies $^{\alpha}$

- Origin in an article by Tyler Cowen and Patrick Collison in The Atlantic^a
- Roots of Progress Institute

It is a good start, but there are significant gaps:

- It is techno-centric
- It is reductionist
- It is "western" first in perspective

^a John Findling and The Editors of Encyclopaedia Britannica, "World's Fair: Modernism and Cold War Rivalries" (https://www.britannica.com/topic/worlds-fair/Modernismand-Cold-War-rivalries, 2025).

^aPatrick Collison and Tyler Cowen, "We Need a New Science of Progress," The Atlantic, 2019, https://www.theatlantic.com/science/archive/2019/07/weneed-new-science-progress/594946/.

Motivations, Assumptions and Context

Human Progress is Often (Justifiably) Criticized

- Environmental degradation
- Significant focus on growth and GDP
- Rising social and economic inequality
- Cultural erosion, alienation and mental health
- The world wars followed the industrial revolution

Figure 12: A typical scene in the Industrial Revolution, the Black Country (Birmingham, England)^a

^aSamuel Griffiths, "Griffiths' Guide to the Iron Trade of Great Britain: An Elaborate Review of the Iron and Coal Trades for Last Year, Addresses and Names of All Ironmasters, with a List of Blast Furnaces" (Published for the Proprietor, 1873).

Current State

Current State

Current State

What we Learned (and din't) from the Pandemic

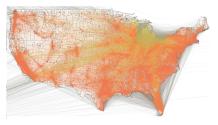


Figure 13: The complexity of the U.S. mobility network $^{\mbox{\scriptsize a}}$

On one side:

- Interconnectedness was a problem
- Many of our systems were not prepared
- Conspiracy theories became widespread

On another side:

- Vaccination rates
- mRNA vaccines
- Global collaboration
- Social distancing
- ightarrow The world ... was fine after that?

^aAlexander Mercier, Samuel Scarpino, and Cristopher Moore, "Effective Resistance Against Pandemics: Mobility Network Sparsification for High-Fidelity Epidemic Simulations," PLOS Computational Biology 18, no. 11 (2022): e1010650.

- Current State

Mapping to Current State: Technological Progress

Current state:

- Major breakthroughs require large teams
- Many foundational discoveries are already made
- We might be entering a period of technological stagnation^a

Why complexity is a root cause:

- Diminishing returns of effort more coordination is required
- Paradigm-shifting discoveries are rare^b
- Increased specialisation of research is required

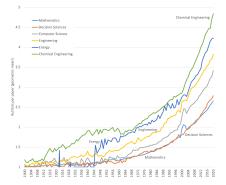


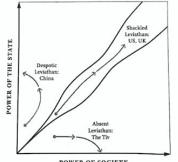
Figure 14: The average number of authors per journal article in science and engineering.^a

^aTyler Cowen, The Great Stagnation: How America Ate All the Low-Hanging Fruit of Modern History, Got Sick, and Will (Eventually) Feel Better: A Penguin eSpecial from Dutton (Penguin, 2011).

^bThomas S Kuhn, The Structure of Scientific Revolutions, vol. 962 (University of Chicago press Chicago, 1997).

^a Mike Thelwall and Nabeil Maflahi, "Research Coauthorship 1900–2020: Continuous, Universal, and Ongoing Expansion," Quantitative Science Studies 3, no. 2 (2022): 331-44, https://doi.org/10.1162/qss_a00188.

- Current State


Mapping to Current State: Economic Progress

Current state:

- Unbounded growth over resilience
- Systemic brittleness
- · Widening inequality

Why complexity is a root cause:

- Ethical economic progress requires a balance of power
- This "narrow corridor" is rare and fragile
- Institutions are path-dependent
- There is no "end of history" in sight

POWER OF SOCIETY

Figure 15: The narrow corridor for socio-economic progress^a

^a Daron Acemoglu and James A Robinson, The Narrow Corridor: How Nations Struggle for Liberty (Penguin UK, 2019).

- Current State

Mapping to Current State: Social Progress

Current state:

- Hauntology: society has lost belief in the future^a
- The post-truth world^b
- Depolitisation and hypernormalisation
- Conspiracy theories, nobody is at the wheel
- Algorithmic bias and the amplification of bias and division

Why complexity is a root cause:

- Causality is difficult to establish
- Overabundance of information (signals)
- Decreasing trust in institutions because of a (perceived) loss of control

Figure 16: The paintings of Simon Stalenhag capture the nostalgia for a future that didn't happen^a

^a Mark Fisher, Ghosts of My Life: Writings on Depression, Hauntology and Lost Futures (John Hunt Publishing, 2014).

^bCarl Sagan and Ann Druyan, The Demon-Haunted World: Science as a Candle in the Dark (Ballantine books, 1997).

^aSimon Stålenhag, 2025, https://www.simonstalenhag.se/.

- Current State

Complex Systems I: Wicked Problems

The sum of all fears: it is complexity all the way down.

Figure 17: The Grand Renaissance Dam (GERD) project impacts a whole region^a

Figure 18: The complexity of one of many subsystems relevant to GERD^a

^aKevin G Wheeler et al., "Understanding and Managing New Risks on the Nile with the Grand Ethiopian Renaissance Dam," Nature Communications 11, no. 1 (2020): 5222.

^aDeclan Conway, "The Impacts of Climate Variability and Future Climate Change in the Nile Basin on Water Resources in Egypt," International Journal of Water Resources Development 12, no. 3 (1996): 277-96.

- Current State

Complex Systems II: Facts and Information

"The road to hell is paved with good intentions".

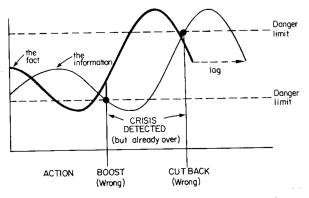


Figure 19: A delay between facts and information is inevitable³

³Stafford Beer, "Platform for Change: A Message from Stafford Beer," 1975.

Paths Forward (Rethinking)

Paths Forward (Rethinking)

Paths Forward (Rethinking)

Stay in the Game by Reducing Global Catastrophic Risk

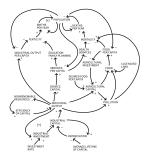


Figure 20: Critical variables for civilization's survival^{\alpha}

Via negativa:^a the purpose of life is not to win the game, but stay in the game. If we avoid the risks - we are good to go?

Global risks:

- Climate change
- Global (nuclear) conflict
- Bioweapons
- Rogue Al
- ...

^aNassim Nicholas Taleb, Antifragile: Things That Gain from Disorder, vol. 3 (Random House Trade Paperbacks, 2014).

^a Donella H Meadows et al., "The Limits to Growth," in Green Planet Blues (Routledge, 2018), 25–29.

Paths Forward (Rethinking)

Acknowledge the Trajectories

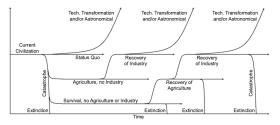


Figure 21: Potential futures⁴

- There is a (rough) consensus where things are going, and the data to support this⁵
- History repeats itself
- Individual agency matters and there are tipping points, but systemic inertia dominates
- Historical lock-in determins which futures remain possible⁶

ightarrow The window for transformation narrows over time.

⁴Seth D Baum et al., "Long-Term Trajectories of Human Civilization," Foresight 21, no. 1 (2019): 53-83.
⁵Herrington, "Update to Limits to Growth."

⁶William MacAskill, What We Owe the Future: The Sunday Times Bestseller (Simon; Schuster, 2022).

Paths Forward (Rethinking)

Look at the Forest and the Trees

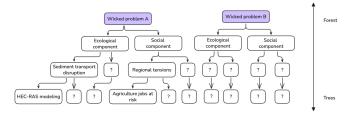


Figure 22: Similarities and differences in breaking down wicked problems (complex systems)

- Wicked problems (complex systems) can look different at a glance, but share systemic similarities on a high level
- On lower levels we need deepening domain knowledge
- We must pay attention to all levels at the same time

Paths Forward (Rethinking)

Accept Objective Reality I: Computation is (Somewhat) Possible

		00000000011111111112 12345678901234567890	
1	Orbillea millefolium	13.,222.,4,2	Ach mil
2	Porostis stolonifera		Bor sto
3	Rira praecox		Gir ma
÷.	Ricoecurus geniculatus	.27253854	ALC Gen
5	Bothoxanthus odocatum		Ant ode
ë	Bellis pereonis	.3222	Bel per
2	Bronus hordaceus	.4.32.24	Bro hor
8	Checopodium album		Che alb
9	Cirsium arvense		Cir erv
10	Eleocheris pelustris		ELe oal
11	Elymus repens	44444	ELV rep
12	Empetrum nigrum		Emp nig
13	Hypochaeris radicata		Hap pad
14	Juncus enticulatus		-bio art
15	Juncus bufonius		dan haf
	Leontodon autumnalis	.522333332362222.2562	Leo aut
	Lolium perenne	75652564267 2	Lol per
	Plantago lanceolata		PLa Lan
19	Poa pratensis	44542344444.213	Pos ora
	Poe trivielis	2765645454.452	Poa tri
21	Potentille palustris		Pot pal
-22	Renunculus flamula		Ran fla
-23	Runex acetosa		Run ace
-24	Segine procumbers	522.2423.	Seg pro
25	Salix repens		Set rep
	Trifolium pratense		Tri pre
27	Trifolium repens	.5212522363328122.	Tri rep
	Vicia Lathyroides		Vic Lat
-29	Brachythecium rutabulum	2226222244 44 . 634	Bra rut
	Callierophella cuspidata		

Figure 23: Species counts per ecological site in dune meadows in the Netherlands^a

^a RHG Jongman, Cajo JF Ter Braak, and Onno FR Van Tongeren, Data Analysis in Community and Landscape Ecology (Cambridge university press, 1995).

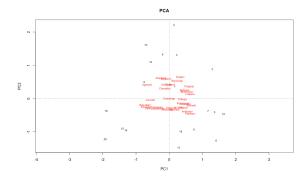


Figure 24: Patterns uncovered in the dataset by doing a Principal Component Analysis (PCA)

Paths Forward (Rethinking)

Accept Objective Reality II: But Not for Wicked Problems

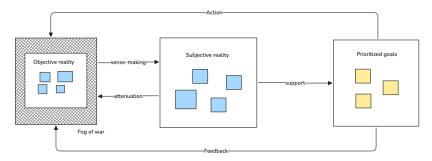


Figure 25: Making decisions in a complex environment

- Reality would never match our models
- But it exists nevertheless
- If we accept this, and have good goals the steps are clear

"The map is not the territory" - Alfred Korzybski⁷

⁷Alfred Korzybski, Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics, 1st ed. (New York: The International Non-Aristotelian Library Publishing Company, 1933). Boyan Angelov

Paths Forward (Rethinking)

Case Study: the Subak Irrigation System in Indonesia I

Figure 26: The subak system^a

Context:

- Multi-stakeholder governance: farmers, priests, and water temple councils
- Interlinked upstream-downstream dependencies
- Synchronised water distribution and crop cycles to mitigate shortages and pest outbreaks

What can we learn from it?

- Distributed governance enables resilience in complex, interdependent systems
- Ecological and social synchrony outperforms centralized control
- Top-down interventions often disrupt finely tuned local equilibria and produce unintended consequences

^aJ Stephen Lansing and Murray P Cox, Islands of Order: A Guide to Complexity Modeling for the Social Sciences (Princeton University Press, 2019).

Paths Forward (Rethinking)

Case Study: Pleistocene Park in Siberia

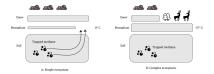


Figure 27: Attempts at complex system control in Pleistocene Park^a

Context:

- Grazing megafauna reduce snow insulation, accelerating surface cooling
- Permafrost thaw leads to methane emissions—a potent climate feedback

What can we learn from it?

- Ecological engineering can harness feedback loops to stabilize complex systems
- Nonlinear dynamics and time-lags are crucial—effects may emerge decades after interventions
- Restoring functional diversity can be more impactful than direct technological fixes

^a Boyan Angelov, "Managing the Century of Complexity: Origins, Evolution and Productive Future Avenues with Systems Thinking," n.d.

Paths Forward (Rethinking)

What to do: Example in Rethinking

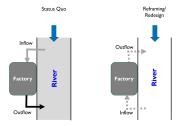


Figure 28: Readjusting incentives through variety engineering $^{\mbox{\tiny a}}$

Context:

- Factory on the bank of a river
- Pollutant discharged
- Status quo: seen as a **policing** problem

What can we learn from it?

- Reframe as a design problem
- Understand incentives
- ightarrow the factory manages itself

^a Markus Schwaninger and Stefan Ott, "What Is Variety Engineering and Why Do We Need It?" Systems Research and Behavioral Science 41, no. 2 (2024): 235-46.

Paths Forward (Rethinking)

What to do: a New Branch of Progress Studies

- Expand the definition: social, economic, and technological progress are codependent
- Objective reality: anchor to shared frameworks (Universal Declaration of Human Rights, UN SDG, planetary boundaries)
- Adopt diverse views, beyond the western
- Adopt first principles, transdisciplinary approach

ightarrow And finally - study progress.

Figure 29: The cover of "Science in Life" (1990)

Paths Forward (Rethinking)

What to Do: Rethinking

- Build more viable, antifragile⁸ systems that learn
- Take lessons from complexity
- Avoid catastrophic risk
- Adopt language of complex systems (Lock-in, feedback loops, trajectories and tipping points and scale, etc.)
- Use new frameworks (estuarine mapping, variety engineering, etc.)
- Pause, think, iterate

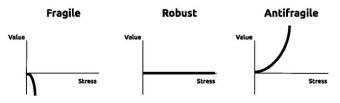


Figure 30: The three types of systems⁹

⁸Stafford Beer calles them "ultrastable" in his work.

⁹René Bliekendaal, "Towards an Antifragile Public Sector" (PhD thesis, Antwerp Management School, 2022).

- Conclusion

Conclusion

L Conclusion

Take Home Messages I

If we are to move forward in this fog of war, we must rethink our approach and **transplant learnings from complexity science** into boardrooms, parliaments, and the vocabulary of both experts and citizens

L Conclusion

Take Home Messages II

The newly forming "progress studies" field is a new opportunity to do exactly that, if it stays away from technological universalism and takes steps beyond diagnosing the problem and into **sense-making** and **action**.

L Conclusion

"The [revolution] not a linear process ... but a constant beginning again" - Slavoj Zizek $^{\rm 10}$

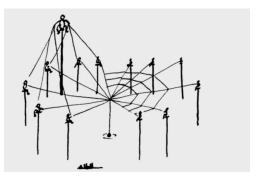
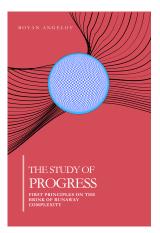


Figure 31: How it feels to make decisions in our world today¹¹

¹⁰Slavoj Žižek, "Against Progress," 2024.


¹¹Stafford Beer, Designing Freedom (House of Anansi, 1993).

Upcoming Book

Things I didn't cover today:

- History of thinking about progress
- A moral framework
- More frameworks
- Metalanguage
- Additional case studies
- ...

You can follow my work at studyofprogress.org.

TLDR; A Manifesto

RETHINK!

- Adopt a more complete definition of progress
- Accept that complexity is a barrier to progress
- Start designing systems that are antifragile and that match the complexity of the challenges (at the moment they are naive, even with the best intentions)
- The idea is not to have a straight path from A to B, but to get there
- Let go of hierarchical ideas of centralized control
- Understand there is a rough idea where things are going
- Understand that even though we can't measure everything, we can steer
- See that the tools to deal with it are at our disposal, it requires rethinking
- Avoid catastrophic risk, stay in the game: incremental progress (protopia)¹²

¹²Kevin Kelly, "Protopia" (https://kk.org/thetechnium/protopia/, 2011), https://kk.org/thetechnium/protopia/.